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Abstract. In this paper, we investigate the properties of the S(G)-set, and the upper security number of standard
graphs. We also characterize the graphs with S(G)≤ 3 and the graphs with S(G)≥ n−2.
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1. INTRODUCTION

The concept of alliance and some of its variants was introduced by Kristiansen, Hedetniemi,
and Hedetniemi [1, 2]. In more realistic settings, alliances are formed so that any attack on the
entire alliance or any subset of the alliance can be safeguarded. Considering the model of this
situation, Brigham, Dutton, and Hedetniemi [3, 4] introduced the concept of secure sets as a
generalization of defensive alliances in a graph.

Let G = (V,E) be a graph and v ∈ V . Then the open neighbourhood of v is N(v) = {u :
uv ∈ E} and the closed neighbourhood of v is N[v] = N(v)∪{v}. For any set S ⊆ V , the open
neighbourhood of S is N(S) =∪v∈SN(v) and the closed neighbourhood of S is N[S] =∪v∈V N[v].
The boundary of S is the set ∂S = N[S]−S.

Let S = {s1,s2, . . . ,sk} ⊆ V . An attack on S is a collection of k mutually disjoint sets A =

{A1,A2, . . . ,Ak}, where Ai ⊆ N[si]− S, 1 ≤ i ≤ k. A defence of S is a collection of k mutually
disjoint sets D = {D1,D2, . . . ,Dk}, where Di ⊆ N[si]∩S, 1≤ i≤ k.

(1) An attack A is defendable if there exists a defence D such that |Di| ≥ |Ai| for 1≤ i≤ k.
(2) A set S is secure if and only if every attack on S is defendable.
(3) The minimum cardinality of a secure set in a graph G is called the security number of

G, denoted by s(G).
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(4) A secure set of cardinality s(G) is called an s(G)-set or a minimum secure set.
(5) A secure set S is called minimal secure set if none of its proper subsets are secure.
(6) The maximum cardinality of a minimal secure set of G is called the upper security

number of G, denoted by S(G).
(7) A minimal secure set with cardinality S(G) is called an S(G)-set.
(8) A subset X ⊂ S is called S− secure if every attack on S in which Ai = /0, whenever

si /∈ X , is defendable.
Let G = (V,E) be a graph with k components G1,G2, . . . ,Gk. Then

s(G) = min{s(Gi) : 1≤ i≤ k}

and
S(G) = max{S(Gi) : 1≤ i≤ k}.

Therefore, throughout this paper, we consider only connected graphs and follow standard no-
tations as in [5]. For the similar work, we refer to [1, 2, 6–8] and our earlier results [9]. The
following observation is straightforward.

Observation 1.1. For a nontrivial graph G of order n, any set of n− 1 vertices is a secure set
and 1≤ s(G)≤ S(G)≤ n−1.

We recall the following results for immediate references.

Observation 1.2 (Brigham, Dutton, and Hedetniemi [3]). Let G = (V,E) be a connected graph
and S⊆V .

(1) If X ⊆ S is S-secure, then |N[X ]∩S| ≥ |N[X ]−S|. The set S is secure if and only if X is
S-secure for every X ⊆ S.

(2) Every s(G)-set is connected.
(3) If S1 and S2 are vertex disjoint secure sets in the graph G, then S1∪S2 is a secure set in

G.

Theorem 1.3 (Brigham, Dutton, and Hedetniemi [3]). Let G = (V,E). A set S ⊆V is secure if
and only if |S| ≥ |N[S]−S| and every X ⊆ S is S-secure whenever |X | ≤ |N[X ]−S|−1−κ(〈S〉),
where κ(〈S〉) is the vertex connectivity of the subgraph induced by S.

Theorem 1.4 (Brigham, Dutton, and Hedetniemi [3]). Let G = (V,E) be a graph.
(1) s(G) = 1 if and only if δ (G)≤ 1.
(2) s(G) = 2 if and only if δ (G) ≥ 2 and V has a subset S = {u,v}, where u and v are

adjacent and |∂S| ≤ 2.
(3) s(G) = 3 if and only if s(G) > 2 and V has a subset S = {u,v,w}, where |∂S| ≤ 3 and
〈S〉 is either K3 or P3 = 〈u,v,w〉 with |N(u)∩∂S|, |N(w)∩∂S| ≤ 2.

(4) s(Kn) =
⌈n

2

⌉
, s(Cn) = 2, and s(Km,n) =

⌈m+n
2

⌉
.

Theorem 1.5 (Brigham, Dutton, and Hedetniemi [3]). Let G = (V,E) and S ⊆ V . Then S is
secure if and only if |N[X ]∩S| ≥ |N[X ]−S| for all X ⊆ S.

Observation 1.6 (Dutton, Lee, and Brigham [4]). Let G be a graph of order n with minimum
degree δ (G). Then any minimal secure set has cardinality at most n−

⌈
δ (G)

2

⌉
.
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Remark 1.7. For a connected graph G of order 4, any pair of adjacent vertices is a secure set
and hence S(G)≤ 2. Further, S(G) = 1 only if G≡ K1,3.

2. PROPERTIES OF S(G)-SETS

We now prove a theorem which extends the result of Brigham, Dutton, and Hedetniemi [3].

Theorem 2.1. For every minimal secure set S of a graph G, the graph 〈S〉 is connected.

Proof. Let S = {s1,s2, . . .sm} be a minimal secure set of G. Suppose that 〈S〉 has k components
and k ≥ 2. Then there is a partition of S into k subsets such that 〈S1〉,〈S2〉, . . . ,〈Sk〉 are the
components of 〈S〉with S1∪S2∪·· ·∪Sk = S and Si∩S j = /0 for every i, j with i 6= j. Without loss
of generality, we may assume S1 = {s1,s2, . . . ,sm1}. Let A = {A1,A2, . . . ,Am1} be any attack on
the set S1 in G. Then A′= {A1,A2, . . . ,Am1,Am1+1, . . . ,Am}, where Ai = /0 for m1+1≤ i≤m is a
corresponding attack on S in G. Since S is secure, there exists a defence D′ = {D1,D2, . . . ,Dm}
such that |Di| ≥ |Ai| for 1 ≤ i ≤ m. By the definition of defence, Di ⊆ N[si]∩ S for each i,
1 ≤ i ≤ m. Since S1∩S j = /0 for all j, 2 ≤ j ≤ k, Di ⊆ N[si]∩S1 for each i, 1 ≤ i ≤ m1. Thus
D = {D1,D2, . . . ,Dm1} is a defence of S1 such that |Di| ≥ |Ai| for 1 ≤ i ≤ m1 and the attack A
on S1 is defendable. Since an attack A on S1 is arbitrary, it follows that every attack on S1 is
defendable. Hence S1 is a secure set and S1 ⊂ S, a contradiction to the minimality of S. Hence
〈S〉 must be a connected subgraph of G. �

Observation 2.2. Let G = (V,E) be any graph and S be a secure set of G. Then for any
vertex v ∈ S, at least

⌊
deg(v)

2

⌋
vertices, which are adjacent to v must belong to S. Hence |S| ≥⌊

deg(v)
2

⌋
+1 =

⌈
deg(v)+1

2

⌉
.

From the definition, S(G) ≥ s(G) and hence all the lower bounds for s(G) holds good for
S(G) also. In the following theorem, we obtain an upper bound for S(G) in terms of order of G.

Theorem 2.3. For a connected graph G = (V,E) of order n≥ 4, S(G)≤ n−2.

Proof. From Remark 1.7, the result holds for n = 4. Let n≥ 5 and v be any vertex of G. Then
by Observation 1.2, s(G)≤ n−1 and any set of n−1 vertices is secure. That is, for any vertex
v ∈V , the set S =V −{v} is a secure set. We now show that S is not a minimal secure set.

Assume that S is a minimal secure set and u ∈ S. Then for some u ∈ S, S−{u} is not
a secure set. Therefore there exists an attack A on S−{u}, which is not defendable. Since
V − (S−{u}) = {u,v} and A is not defendable, there exists at least one vertex w in S−{u}
such that deg(w) = 2 and w is adjacent to both v and u (as shown in the Figure 1). But as G is
a connected graph of order n ≥ 5, there exists a vertex y in S−{u,v,w} such that y is adjacent
to u or v. If y is adjacent to u, then S−{w} is a secure set (shown in the graph G1 of Figure
1), which is a contradiction to the assumption that S is a minimal secure set. Suppose that there
is no vertex in S−{u,v,w} is adjacent to u. Then y is adjacent to only v (the graph G2 of the
Figure 1). The set S1 = S−{u,w} 6= /0 and N[S1]−S1 = {v}. Therefore for any subset X of S,
|N[X ]− S1| ≤ 1 and |N[X ]∩ S1| ≥ 1 and S1 is a secure set in G. This is a contradiction to the
minimality of S. Therefore if S is a minimal secure set, then |S| ≤ n−2 and S(G)≤ n−2. �
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FIGURE 1. The graphs G1 and G2 for which V −{u,v} is not a secure set.

From Theorem 2.3, a general upper bound for security number of a graph in terms of its order
is as follows.

Corollary 2.4. For a graph G of order n≥ 4, s(G)≤ n−2 and every set of n−2 vertices of G
contains a secure set. Further, each set of n−2 vertices, not containing a vertex of degree 2, is
secure.

The join of two graphs G = (V1,E1) and H = (V2,E2) is denoted by G+H and is graph,
whose vertex set is V1∪V2, and consists of all the edges of E1∪E2 and the edges joining every
vertex of G with every vertex of H.

The upper bound obtained in the above Theorem 2.3 is tight bound for n = 4 because S(C4) =

2. For an integer n ≥ 5, we consider the graph G = Cn−2 +K2. Let {u1,u2} be the vertex set
of K2 and {v1,v2, . . . ,vn−2} be the vertex set of Cn−2, with vi adjacent to vi+1 for 1≤ i≤ n−3
and vn−2 adjacent to v1. Then the set S = {v1,v2, . . . ,vn−2} is a minimal secure set in G and
S(G) = n−2. Thus we state the following;

Proposition 2.5. For every integer n≥ 4, there is a graph G of order n with S(G) = n−2.

FIGURE 2. The graph C8 +K2.

2.1. Upper Security Number of Standard Graphs. We recall that S(Kn) = s(Kn) = 1, for
n = 1,2. In this section, the upper security number of some other standard graphs of order at
least 3 are computed.
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Proposition 2.6. For an integer n≥ 3, S(Kn) = s(Kn) =
⌈n

2

⌉
, S(Cn) = s(Cn) = 2,

S(Pn) =

{
1, f or n = 3,
2, f or n≥ 4.

The proof of the above proposition is a direct consequence of the definition of the upper
security number.

Theorem 2.7. For positive integers m,n with m≤ n, we have

S(Km,n) =

{
1, f or m = 1 (or n = 1),⌈m+n

2

⌉
, f or m,n≥ 2.

Proof. Every vertex of K1,n is a pendant vertex except the central vertex and each singleton
set containing a pendant vertex is a secure set. Therefore, every subset of vertices containing
more than one vertex is not a minimal secure set. So S(K1,n) = s(K1,n) = 1. Let m,n ≥ 2. By
Observation 1.2 and the statement (4) of Theorem 1.4, we get

S(Km,n)≥
⌈

m+n
2

⌉
.

Let V1 = {u1,u2, . . .um}, V2 = {v1,v2, . . .vn} be the bipartition of vertex set and S ⊆ V be a
minimal secure set of Km,n. Since 〈V2〉 is totally disconnected, by Theorem 2.1, we get S∩V1 6=
/0. Let v ∈ S∩V1. Then by Theorem 1.5 with X = {v}, we get |N[v]∩ S| ≥ |N[v]− S|. This
implies that

|S∩V2|+1≥ |V2|− |S∩V2| ⇒ |S∩V2| ≥
n−1

2
.

Since |S∩V2| is an integer, we have

|S∩V2| ≥
⌈

n−1
2

⌉
=
⌊n

2

⌋
.

Similarly, we get |S∩V1| ≥
⌊m

2

⌋
. Let S′ be any secure set with |S′| >

⌈m+n
2

⌉
. Then S′ contains

a minimal secure set. Therefore by the above arguments, |S′∩V1| ≥
⌊m

2

⌋
and |S′∩V2| ≥

⌊n
2

⌋
.

Further, we observe |S′∩V1| ≥
⌊m

2

⌋
+1 or |S′∩V2| ≥

⌊n
2

⌋
+1 (otherwise, |S′|= |S′∩V1|+ |S′∩

V2| ≤
⌊m

2

⌋
+
⌊n

2

⌋
≤
⌈m+n

2

⌉
, a contradiction). Without loss of generality, we assume that

|S′∩V1| ≥
⌊m

2

⌋
+1.

Let v ∈ S′∩V1, S1 = S′−{v} and X ⊆ S1. Then,

|N[X ]∩S1| ≥
⌊n

2

⌋
+1≥ n−

⌊n
2

⌋
≥ |N[X ]−S|, if X ⊆ S1∩V1;

|N[X ]∩S1| ≥
⌊m

2

⌋
+1≥ m−

⌊m
2

⌋
≥ |N[X ]−S|, if X ⊆ S1∩V2;

and

|N[X ]∩S1| ≥
⌈

m+n
2

⌉
≥ (m+n)−

⌈
m+n

2

⌉
≥ |N[X ]−S|, otherwise.

Therefore, by Theorem 1.5, S1 is a secure set. Thus S′ is not minimal. Since S′ is arbitrary, it
follows that, S(Km,n)≤

⌈m+n
2

⌉
. Hence S(Km,n) =

⌈m+n
2

⌉
. �



6 C. HEGDE, B. SOORYANARAYANA, S. SEQUEIRA

Remark 2.8. Let V1 and V2 be vertex partition of Km,n. If S is any subset of vertices of Km,n

with |S∩V1| ≥
⌈m

2

⌉
and |S∩V2| ≥

⌈n
2

⌉
, then S is secure in Km,n.

Remark 2.9. If S is a secure set of Km,n and S′ is any set containing S, then S′ is also a secure
set in Km,n.

The graph Cn+K1 is said to be wheel and is denoted by W1,n. The graph W1,n is of order n+1,
consists one vertex of degree n, called the central vertex and all other vertices are of degree 3,
called rim vertices. The edges between a rim vertex and the central vertex are called spokes and
the other edges are considered as rim edges.

Theorem 2.10. For an integer n≥ 3, we have

s(W1,n) =

{
2, f or n = 3,
3, f or n≥ 4.

Proof. Observe the graph W1,3 ≡ K4. Hence, by Proposition 1.4, we have s(W1,3) = 2. Let
n ≥ 4, and V (W1,n) = {v,v1,v2, . . . ,vn} with v as its central vertex; v1,v2, . . .vn as rim vertices
such that vi is adjacent to vi+1 for each i, 1≤ i≤ n−1; and vn adjacent to v1. We note that if S is
any set of vertices of W1,n with |S|= 2 and |N[S]−S| ≥ 3, by Theorem 1.3, we have that S is not
a secure set and s(W1,n) ≥ 3. In W1,4, any set of three vertices is a secure set and s(W1,4) = 3.
Let n≥ 5. Consider the set S = {v1,v2,v3}. Then N[S]−S = {vn,v4,v}. For any set X ⊆ S, we
observe that |N[X ]∩S| ≥ |N[X ]−S|. Hence by Theorem 1.5, S is a secure set and s(W1,n) = 3
for all n≥ 4. �

Remark 2.11. For an integer n≥ 4, let V (W1,n) = {v,v1,v2, . . . ,vn} with v as its central vertex
and v1,v2, . . .vn as rim vertices such that vi is adjacent to vi+1 for each i, 1 ≤ i ≤ n− 1 and vn

adjacent to v1. Then, for each i,1≤ i≤ n, the set Si = {vi,vi+1,vi+2} is a secure set, where the
suffix additions are under modulo n.

Theorem 2.12. For an integer n≥ 3, we have

S(W1,n) =

⌈
n+1

2

⌉
.

Proof. Observe that the graph W1,3 ≡ K4. Hence by Theorem 2.6, S(W1,3) = 2. Let n ≥ 4, and
V (W1,n) = {v,v1,v2, . . . ,vn}with v as its central vertex and v1,v2, . . .vn are rim vertices such that
vi is adjacent to vi+1 for each i, 1≤ i≤ n−1 and vn adjacent to v1. We observe the following:

(1) The set {v} is not a secure set.
(2) For any i, 1≤ i≤ n, deg(vi) = 3, implies that {vi} is not a secure set.
(3) For any i, j with 1 ≤ i, j ≤ n we have |N[{vi,v j}]−{vi,v j}| ≥ 3 and by Theorem 1.3,

the set {vi,v j} is not a secure set. Also for any i, 1≤ i≤ n, |N[{vi,v}]−{vi,v}| ≥ 3 and
the set {vi,v} is not a secure set.

(4) For any i, 1≤ i≤ n, the set {vi,vi+1,vi+2} (where addition of suffixes is under modulo
n) is a minimal secure set.

Now consider the set S = {v1, v2, v4, v5, v7, v8, . . ., vk, v}, where k = n−
⌈n

4

⌉
for n ≡

2(mod 4 ), otherwise k = n−
⌈n

4

⌉
−1. For any vertex v j ∈ S, |N[v j]∩S|= 3, and |N[v j]−S|= 1
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implies that |N[X ]∩ S| ≥ |N[X ]− S| for all X ⊆ S. So, S is a secure set. Moreover, any non-
empty subset of S contains a subset S1 such that N[S1] = {vi} or {v,vi} for some i, 1 ≤ i ≤ n;
or N[S1] = {vi,v j} for some i, j, with 1≤ i, j ≤ n. Hence by the above observations, no proper
subset of S is secure and S is a minimal secure set. Thus, S(W1,n)≥ |S|=

⌈n+1
2

⌉
.

Further, if S is any secure set with |S| >
⌈n+1

2

⌉
, S is not minimal. This fact is proved in two

cases.
Case 1. v /∈ S.
Since S is secure, for each vi,v j ∈ S, we must have |N[vi]∩ S| ≥ 2 and |N[{vi,v j}]| ≥ 3. By

the pigeonhole principle, we can find some j, 1 ≤ j ≤ n, such that S′ = {v j,v j+1,v j+2} ⊂ S,
where the addition of suffixes is under modulo n. Now the set S′ is secure set of W1,n and S is
not minimal.

Case 2. v ∈ S.
In this case, if there exist two vertices vi,v j ∈ S, such that |i− j| ≥ 3 and

|N[vi]∩S|= |N[v j]∩S|= 2,

then S is not a secure set. Therefore, there can be at most one i, where 1 ≤ i ≤ n is such that
|N[vi]∩S|= |N[vi+2]∩S|= 2. Since |S|>

⌈n+1
2

⌉
and some j, we can find a secure set 1≤ j≤ n

such that {v j,v j+1v j+2} ⊂ S. Otherwise, we can find a proper subset S1 of S with at most one
vertex vi ∈ S1 with |N[vi]∩S1|= 2. For any other vertex v j ∈ S1, |N[v j]∩S1|= 3. Therefore S1
is a secure set of W1,n. Thus S(W1,n) =

⌈n+1
2

⌉
. �

3. CHARACTERIZATION OF GRAPHS WITH S(G)≤ 3

By Proposition 1.4, s(G) = 1 if and only if δ (G) ≤ 1. We seek similar results related to
upper security number of a graph. It is very clear, for all the graphs with δ (G) ≥ 2, s(G) ≥ 2
and S(G)≥ 2. But we have several graphs with δ (G) = 1 and S(G)≥ 2. We now characterize
the graphs with S(G) = 1 in terms of number of pendant vertices in the graph.

Let G = (V,E) be a connected graph of order at least 3 and P be the set of pendant vertices
of G. Suppose that P 6= /0 and no subset of V −P is secure. Then every secure set of G must
contain at least one pendant vertex. A singleton set containing a pendant vertex is a minimal
secure set. Therefore, if P 6= /0 and no subset of V −P is secure, then S(G) = 1. On the other
hand if S(G) = 1, then δ (G)≤ 1. Thus we have the following proposition.

Proposition 3.1. Let G = (V,E) be a connected graph and P be the set of all pendant vertices
of G. Then S(G) = 1 if and only if P 6= /0 and no subset of V −P is secure.

Proposition 3.2. If G = (V,E) be a connected graph of order at least 3 with S(G) = 1 and P be
the set of pendant vertices of G, then |P|> |V −P|.

Proof. Let G = (V,E) be a connected graph of order at least 3 with S(G) = 1 and P be the set
of all pendant vertices of G. Suppose that |P| ≤ |V −P|. Then the set V −P is a secure set and
hence we can find a minimal secure set S such that S ⊆ V −P. Since S has no pendant vertex
and is secure, we get S(G)≥ 2, which is a contradiction. Therefore, |P|> |V −P|. �
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The converse of the above Proposition 3.2 is not true. In fact, there are several graphs with
|P|> |V −P| and S(G)≥ 2. For the graphs of the Figure 3, we have S(G) = 1. The contraposi-
tive of Proposition 3.2 is quite useful.

Remark 3.3. Let G = (V,E) be a connected graph of order at least 3 and P be the set of pendant
vertices of G. If |P| ≤ |V −P|, then S(G)≥ 2.

FIGURE 3. The graphs for which S(G) = 1.

The following result is a consequence of Theorem 2.1 and Proposition 1.4.

Proposition 3.4. Let G= (V,E) be a connected graph of order n≥ 4. Then S(G) = 2 if and only
if every set S of G with |S| ≥ 2 and not containing a pendant vertex contains a subset S′ = {u,v}
such that u,v are adjacent and |∂S| ≤ 2.

Now we determine the properties of graphs with upper security number 3. Let S be a secure
set of graph G with |S| ≥ 3. If S contains a pendant vertex or two adjacent vertices u,v with
deg(u) = deg(v) = 2, then by Proposition 3.1 and Proposition 3.4, S is not a minimal secure set.
Therefore, if a secure set with |S| ≥ 3 is minimal, then for any u ∈ S, degu≥ 2 and for any two
adjacent vertices u,v, |∂{u,v}| ≥ 3. By Proposition 1.4, it follows that S(G) = 3 if and only if
every secure set S of G with |S| ≥ 4 is not minimal and there exists at least one minimal secure
set of cardinality 3. Thus we conclude:

Proposition 3.5. Let G = (V,E) be a connected graph of order n ≥ 6. Then S(G) = 3 if and
only if every set S of vertices of G with |S| ≥ 3 containing no pendant vertex or no two adjacent
vertices u,v each of degree 2, contains a subset S′= {u,v,w}, with |∂S′| ≤ 3 and 〈S′〉 ≡K3 or P3.

4. GRAPHS WITH s(G)≥ n−2

In Section 2, we proved that s(G) ≤ n− 2 for a connected graph G of order n ≥ 4 and any
set of n− 2 vertices of G is secure. In this section, we characterize the graphs of order n with
s(G) = n−1 and s(G) = n−2.

Proposition 4.1. For a nontrivial connected graph G of order n, s(G) = n− 1 if and only if
G≡ K2 or G≡ K3.

Proof. Let G be a nontrivial connected graph of order n and s(G) = n−1. From Corollary 2.4,
we have n≤ 3. If n = 3, then connected graphs of order 3 are P3 and K3. By using Proposition
1.4, we have s(P3) = 1 and s(K3) = 2. For n = 2 the only connected graph of order 2 is K2 and
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s(K2) = 1. Thus G≡ K2 or G≡ K3 for a nontrivial graph G of order n with s(G) = n−1. The
converse follows directly from Proposition 1.4. �

In [4], Dutton et al. proved that if d1 ≤ d2 ≤ ·· · ≤ dn degree sequence of a graph G, then
s(G) ≤ n−

⌈
dk+1

2

⌉
, where k = max

{
i : i≤

⌈
di+1

2

⌉}
. If d4 ≥ 5, then k ≥ 3 and di ≤ di+1 for all

i, 1≤ i≤ n implies
⌈

dk+1
2

⌉
≥
⌈

d4
2

⌉
≥ 3. Then s(G)≤ n−3.

Remark 4.2. Let d1 ≤ d2 ≤ ·· · ≤ dn be the degree sequence of a graph G and s(G) = n− 2.
Then d4 ≤ 4 and hence G has at least 4 vertices of degree not exceeding 4.

Lemma 4.3. Let G be a connected graph of order n. If s(G) = n−2, then n≤ 5.

Proof. Let G = (V,E) be a connected graph of order n with s(G) = n− 2 and S = V −{u,v}
be a s(G)-set in G. Then, for any x ∈ S, we consider the set Sx = S−{x}. Since S is s(G)-
set, we have that Sx is not a secure set. But Sx = V −{u,v,x} implies that |Sx| = n− 3. By
Theorem 1.5, we have that there exists a subset X ⊆ Sx such that |N[X ]∩ Sx| < |N[X ]− Sx|.
Since N[X ]−Sx ⊆V −Sx = {u,v,x}, we get |N[X ]−Sx| ≤ 3. Therefore, |N[X ]∩Sx|< 3.

If X = Sx, then N[X ]∩Sx = Sx, which implies |Sx|< 3. But we have |Sx|= n−3. Therefore
n− 3 < 3 and hence n ≤ 5. Now we consider the case X 6= Sx. Since S is secure and Sx ⊂ S,
by Observation 1.2, we have that Sx− y is S-secure for every y ∈ Sx. If |Sx| ≥ |N[Sx]−Sx|, then
we find from Theorem 1.5 that Sx is a secure set, which contradicts the fact that S is a s(G)-set.
Thus |Sx|< |N[Sx]−Sx|. But we have |N[X ]−Sx| ≤ 3. Therefore |Sx|= n−3 < 3. Hence, we
get n≤ 5 in this case. This completes the proof of the lemma. �

Theorem 4.4. For a connected graph G of order n, s(G) = n− 2 if and only if G ∈ ℑ =

{P3, C4, K4, K4− e, K5, K5− e, C4 +K1, C3 + 2K1,J4}, where J4 is the gear graph of or-
der 5 obtained from W1,4 by removing the alternating spokes.

Proof. By Proposition 1.4, we get s(P3) = 1, s(C4) = 2, s(K4) = 2, and s(K5) = 3. Let e be
any edge in K4. Then we observe that δ (K4 − e) ≥ 2 implies s(K4 − e) ≥ 2 and the set S
containing any two adjacent vertices is a secure set. Therefore s(K4− e) = 2. Now for each
G ∈ Γ = {K5− e, C4 +K1, C3 + 2K1, and J4}, the order of G is 5 and every minimal secure
set in it is also a dominating set. Hence s(G) ≥ 3. Also for all the graphs in {K5− e, C4 +K1,
C3 + 2K1, and J4} ,we observe that any set S containing 3 or more vertices is a secure set.
Therefore, s(G) = 3 for each G∈ Γ. Thus if G is graph of order n and G∈ℑ, then s(G) = n−2.

Conversely, let G be a connected graph of order n with s(G) = n−2. Using by Lemma 4.3,
we have n≤ 5. By Proposition 1.4, for n = 3, the only possibility is G≡ P3, and for n = 4, the
only possibilities are G ≡C4, G ≡ K4 or G ≡ K4− e. Now for n = 5, there are only 5 graphs
satisfying the property that δ (G)≥ 2 and V has no subset S = {u,v} with u and v are adjacent
and |∂S| ≤ 2, and they are K5, K5− e, C4 +K1, C3 +2K1 and J4. Therefore, s(G) = 3 and order
of G is 5, and G must be one among the graphs K5, K5− e, C4 +K1, C3 +2K1, J4. Thus, if G is
a connected graph of order n with s(G) = n−2, then G ∈ ℑ. �
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